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DopplerScatt Programmtic Overview
Scanning Doppler radar developed under NASA's [IP program
Becoming operational under NASA AITT program by 2019
Data Products:
|.Vector ocean surface currents
2.Vector ocean surface winds
3.Radar brightness maps (sensitive to surfactants such as oil films)

Data products are still being refined under AITT. Will be posted in NASA

DopplerScatt Overview

PODAAC when finished.
Mapplng capabilities:

Campaigns flown/planned:

25 km swath

maps 200km x |00km area in about 4 hrs
200m data product posting

Mapping within ~600 m of coast

~5-10 cm/s radial velocity precision.

~ | m/s wind speed, <20° wind direction.

Oregon coast (2016) o s
SPLASH (Submesoscale Processes and Lagrangian Analysis on the Shelf) _____
In Mississippi River Plume
(CARTHE) & Taylor Oil Platform Plume (NOAA), April 18-28, 2017. DopplerScatt instrument. [t has been deployed on a
KISS-CANON in Monterey Bay May -4 2017 DOE King Air and will transition to an operational

, ) ' ' instrument in the NASA King Air B200.
California current (September, 2018)
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@ DopplerScatt Vector Estimation

Good azimuth diversity

Bad azimuth diversity

Bad azimuth diversity



SCIENCE
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- Sentinel 3 2017-04-18
Courtesy of Copernicus
. Sentinel, processed by ESA

DopplerScatt surface current
U component.

Circulation pattern matches
Sentinel 3 color pattern very
closely.




Relative Vorticity




Divergence




@/ Derivative PDFs
from Shcherbina et al., GRL, 2013

Data collected by two ships traveling | km apart in parallel for 500 km and using ADCPs

SHCHERBINA ET AL.: SUBMESOSCALE TURBULENCE STATISTICS

Vorticity Divergence Strain rate
12 (a) © 1 Mean -007 (b) ' . Mean  -0.06 (c) "~ Mean 080
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Skewness > 0 expected as Dlvgrgencg range smaller than Strain ratg approxmately chi-
vorticity. Slightly skewed squared distributed.

£>0 structures have greater
stability towards convergence.
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DopplerScatt Derivative PDFs

Derivatives show similar statistics to Shcherbina et al. 2013

A: 2.0 km
Vorticity Divergence Strain rate
0.8 0.8
0.5 0.7 0.7
0.4 Mean -0.17 0.6 0.6
Median -0.39 Mean +0.03 Mean +1.25
St.dev. +1.25 | g Median +0.02 | o5 Median +1.00
Skew. +1.42 | = St. dev. +0.60 St. dev. +0.93
5 0.3 Skew. -0.01 Skew. +2.57
o 0.4 0.4
0.2 0.3 0.3
0.2 0.2
0.1
0.1 0.1
0.0 all L.._ 0.0 “ 0.0 L-___
-5 0 5 -5 0 5 0 2 4 6
/f . o/f . a/f .
Skewness > 0 expected as Divergence range smaller than Strain rate approximately chi-
vorticity. Slightly skewed squared distributed.

£>0 structures have greater
stability towards convergence.
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Wind Stress Curl
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Stress curl x10% (N/m3)
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Wind Stress Curl vs Relative Vorticity

Correlation Coefficient: -0.55 Regression: y = -2.35e-03 + -1.84e-02x
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Current curl x10% (1/s)



Coming up

King Alr

Cieter

« SMODE: Sub-Mesoscale Ocean Dynamics
Experiment

« NASA Earth Ventures Suborbital-3: 2019-2023
* Pl Tom Farrar (WHOI)
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PHENOMENOLOGY
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Scatterometer Wind GMF

5

—KaDS GMF 3
10l - KaDPMod GMF 6°%
-10F _NSCAT Ext. GMF —9 %
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—NSCAT 6 = 56° 150  -100  -50 0 50 100 150
5 10 15 20 25 Relative Azimuth (deq)
73 . . .
Wind Speed (m/s) The backscatter intensity is modulated as a

The mean radar backscatter increases . . . .
) } function of azimuth angle relative to wind
with wind speed. ..
direction.

* By combining measurements from multiple azimuth angles, wind speed and direction can be
estimated. Ku & Ka backscatter have similar characteristics, so both are suitable for wind
estimation.

* Experiments have shown that backscatter is proportional to wind stress (although normally
parametrized as neutral wind). 16
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Radial Velocities Binned by Wind Direction
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Radial Velocity Decomposition
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CALIBRATION
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Calibration Effects
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ERROR MODEL VALIDATION



Surface Velocity Random Errors
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SPACEBORNE SYSTEM
DESIGN



Lesson 1: Optimize Pulse Separation by
Keeping Pulse Correlation Constant
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Lesson 2: Minimize Temporal Aliasing by
Achieving the Widest Swath Possible

Wide swath & temporal sampling are key
SWOT 14-Day Average Vorticity/f with Filter Cutoff Wavelength 50 km

Error Free 0,=274cm Error Free, Sampled 0, = 2.74 cm, Sampled
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From Chelton et al, 2018
Prog. Ocean. In press

WaCM samples O(2x/day) so that inertial and tidal signal aliasing is minimized in
temporal averages.
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Lesson 3: Minimize Mapping Error by
Coverage Minimizing Gaps
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Estimating Ocean Vector Winds and
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@/ What velocity are we measuring?

Radar

27
PRy
A r 7 Velocity Bragg Scattering
_— 5L Orbital Patch
Vscatterer B 4 platform Vell;)c:tayl

Surface Current

ﬁ

» Radar sensitive to phase speed ~0.5 cm capillary waves

* Free wave phase speed: ~3| cm/s. Capillary waves can also be generated as bound waves due to
straining: will travel at straining wave phase speed (low wind speeds).

* Phase speed modulated by surface currents.Winds will add Stokes drift & surface drift.

» Gravity wave orbital velocity is added to capillary wave velocity. When averaging over surface waves,
velocity is weighted (by radar brightness) spatial average.

* Brightness not homogeneous over long wave:

* Hydrodynamic modulation due to |) capillary amplitude modulation by spatially varying
orbital velocity,; 2) wave breaking; 3) bound waves
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@ Observation Model

n = Z a,, COS @nna: Gravity wave hEIght
In phase with u In phase with w
do .
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DopplerScatt GoM Eddy Validation

In March 2018, DopplerScatt flew over
a large Gulf of Mexico Eddy south of
New Orleans.

DopplerScatt Speed Data Overlaid with ROCIS Speed Data

a

26.9

Ocean surface current data were
collected at the same time with Fugro’s

Remote Ocean Current Imaging
System (ROCIS) which uses FFT's of

~90.8 ~90.6 ~90.4 ~90.2 ~90.0 -so.55pace-time ocean wave imagery and

26.6

Longitude . . .
the dispersion relation to solve for
B 200
00 02 04 06 08 10 12 surface currents.
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“ 100 - = .
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Strain Rate
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Fast Internal Wave Changes
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Doppler Current Measurement Concept

t=0 t=2ot

0 azimugp

0)

r(t

Vector currents are estimated by
Doppler Phase Difference: A® = 2kAr = f0t combining multiple (22) azimuth
Radial velocity component: v, = Ar/dt = AD/(2kdt) observations and projecting vector to the
ocean surface.
Radars provide coherent measurements: both the phase and the amplitude of a
scattered signal are measured.
The phase is proportional to the 2-way travel time (or range)
The amplitude is proportional to the scattering strength of the traget
Doppler measurements, fp, are obtained by measuring the phase difference between
pulses, AD. Noise is reduced by combining multiple pulses.



